## GGSIPU chemistry 2009

1. Increasing order lowest first for the values of $e / m$ for electro $e$, proton $p$, neutron $n$ and $\alpha-$ particles is
a e,p,n, $\alpha$
b n, $\alpha, p, e$
c n,p,e, $\alpha$
d $n, p, \alpha, e$
2. A particle moving with a velocity $10^{6} \mathrm{~m} / \mathrm{s}$ will have de-Broglie wavelength nearly

$$
\begin{aligned}
& \text { [Given, } \mathrm{m}=6.62 \times 10^{27} \mathrm{~kg}, \mathrm{~h}=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{s} \text { ] } \\
& \qquad \begin{array}{l}
\text { a } 10^{-9} \\
\text { b } 10^{-13} \\
\text { c } 10^{-19} \\
\text { d } 1 \dot{A}
\end{array}
\end{aligned}
$$

3. Bohr's radius of $2^{\text {nd }}$ orbit of $\mathrm{Be}^{3+}$ is equal to that of
a $4^{\text {th }}$ orbit of hydrogen
b $2^{\text {nd }}$ orbit of $\mathrm{He}^{+}$
c $3^{\text {rd }}$ orbit of $\mathrm{Li}^{2+}$
d first orbit of hydrogen
4. Half-life period of a radioactive element is 100 yr .How long will it take for its $\mathbf{9 3 . 7 5 \%}$ decay ?
a 400 yr
b $\mathbf{3 0 0} \mathbf{y r}$
c $\mathbf{2 0 0} \mathbf{~ y r}$
d 193 yr
5. Two vessels containing gases $A$ and $B$ are interconnected as shown in the figure.The stopper is opened, the gases are allowed to mix homogeneously. The partial pressures of $A$ and $B$ in the mixture will be, respectively

a 8 and 5 atm
b 9.6 and 4 atm
c 4.8 and 2 atm
d 6.4 and 4 atm
6. The temperature, at which a gas shows maximum ideal behavior,is known as
a Boyle's temperature
b inversion temperature
c critical temperature
d absolute temperature
7. The unit of rate constant of a second order reaction is
a mol/L -s
b L/mol -s
c $\mathrm{L}^{2} / \mathrm{mol}^{2}-\mathrm{s}$
d per second
8. $\mathbf{2} \mathbf{N}_{\mathbf{2}} \mathrm{O}_{5} \rightleftharpoons \mathbf{4} \mathrm{NO}_{\mathbf{2}}+\mathrm{O}_{\mathbf{2}}$

For the above reaction which of the following is not correct about rates of reaction ?
a $\frac{-d\left[N_{2} 0_{5}\right]}{d t}=2 \frac{d\left[O_{2}\right]}{d t}$
b $\quad \frac{-2 d\left[N_{2} O_{5]}\right]}{d t}=\frac{d\left[\mathrm{NO}_{2]}\right.}{d t}$
c $\frac{d\left[N_{2} O_{5]}\right.}{d t}=4 \frac{d\left[O_{2}\right]}{d t}$
d $\frac{-2 d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=4 \frac{d\left[\mathrm{NO}_{2}\right]}{d t}=\frac{d\left[\mathrm{O}_{2]}\right.}{d t}$
9. $A+B \longrightarrow$ Product

If concentration of $A$ is doubled, rate increases 4 times. If concentrations of $A$ and $B$ both are doubled ,rate increases 4 times. If concentrations of $A$ and $B$ both are doubled, rate increases 8 times. The differential rate equation of the reaction will be
a $\quad \frac{d C}{d t}=\mathrm{kC}_{\mathrm{A}} \times \mathrm{C}_{\mathrm{B}} \quad$ b $\quad \frac{d C}{d t}=\mathrm{kC}_{\mathrm{A}}{ }^{2} \times \mathrm{C}_{\mathrm{B}}{ }^{3}$
c $\quad \frac{d C}{d t}=\mathrm{kC}_{\mathrm{A}}{ }^{2} \times \mathrm{C}_{\mathrm{B}} \quad \mathrm{d} \quad \frac{d C}{d t}=\mathrm{kC}_{\mathrm{A}}{ }^{2} \times \mathrm{C}_{\mathrm{B}}{ }^{2}$
10. Which of the following is a wrong statement about equilibrium state ?
a Rate of forwa rd reaction = Rate of backward reaction
b Equilibrium is dynamic
c Catalysis increase value of equilibrium constant
d Free energy change is zero
11. $A+B \rightleftharpoons C+D$ Initially moles of $A$ and $B$ are equal.At equilibrium , moles of $C$ are three times that of $A$.The equilibrium constant of the reaction will be
a 1 b 3 c
4 d 9
12. If for $\mathbf{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{eq}}$ for the reaction $\mathrm{NH}_{3} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2}$ will be
a 6.25 b
25
c 250
d 500
13. A weak acid HX has dissociation constant $10^{-5}$. The pH of 0.1 M solution of this acid will be
a 2 b 3 c 4 d 5
14. Which of the following is not a buffer solution ?
a $100 \mathrm{~mL} 0.1 \mathrm{MCH}{ }_{3} \mathrm{COOH}+50 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{CH} \mathbf{C O O N a}$
b $100 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{CH}{ }_{3} \mathrm{COOH}+50 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{NaOH}$
c $50 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{CH}{ }_{3} \mathrm{COOH}+100 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{NaOH}$
d 100 mL : 0. $1 \mathrm{M} \mathrm{NH} 4 \mathrm{OH}+50 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{HCL}$
15. If $K_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{~S}$ is $10^{-17}$, the solubility of $\mathrm{Ag}_{2} \mathrm{~S}$ in 0.1 M solution of $\mathrm{Na}_{2} \mathrm{~S}$ will be
a $10^{-8}$
b $5 \times 10^{-9}$
C $10^{-15}$
d $10{ }^{-16}$
16. Which of the following has the highest solubility product ?
$\begin{array}{llll}\text { a CuS } & \mathrm{B} & \mathrm{Bi}_{2} \mathrm{~S}_{3}\end{array}$
c CdS d ZnS
17. The pH values of 0.1 solution of $\mathrm{HCL}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{NH}_{4} \mathrm{CL}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ will have the order
a $\mathrm{HCL}<\mathrm{CH}{ }_{3} \mathrm{COOH}<\mathrm{NH}_{4} \mathrm{CL}<\mathrm{CH}_{3} \mathrm{COONa}$
b $\mathrm{CH}{ }_{3} \mathrm{COONa}<\mathrm{NH}_{4} \mathrm{CL}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCL}$
c $\mathrm{NH}{ }_{4} \mathrm{CL}<\mathrm{CH}_{3} \mathrm{COONa}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCL}$
d All will have same pH value
18. For the titration of solution of oxalic acid and sodium hydroxide, the suitable indicator is
a phenolphthalein
b methyl orange
c any of these
d None of these
19. If ' $F$ ' is faraday and ' $N$ ' is Avogadro number, then charge of the4 electron can be expressed as
a FFFN b $\frac{F}{N}$
c $\quad \frac{N}{F} \quad d$ F ${ }^{2} N$
20. By passing 9.65 A current for 16 min 40 s , the volume of $\mathrm{O}_{2}$ liberated at STP will be
a 280 mL
b 560 mL
c 1120 mL d 2240 mL
21. By diluting a weak electrolyte, specific conductivity $K_{c}$ and equivalent conductivity $\quad \lambda_{c}$ change as
a both increase
b $K_{c}$ increases , $\lambda_{c}$ decreases
c K ${ }_{c}$ decreases, $\lambda_{c}$ increases
d both decrease
22. In daniel cell, anode and cathode are respectively
a $\mathbf{Z n} \mid \mathrm{Zn}^{2+}$ and $\mathrm{Cu}^{2+} \mid \mathbf{C u}$
b $\mathbf{C u} \mid \mathrm{Cu}^{2+}$ and $\mathrm{Zn}^{\mathbf{2 +}} \mid \mathbf{Z n}$
c $\mathrm{Fe} \mid \mathrm{Fe}^{2+}$ and $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$
d $\mathrm{Cu} \mid \mathrm{Cu}^{2+}$ and $\mathrm{Fe}^{2+} \mid \mathrm{Fe}$
23. $\mathrm{C}_{2} \mathrm{H}_{2}+\frac{5}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$;

$$
\begin{array}{rr} 
& \Delta \mathrm{H}=-310 \mathrm{kcal} \\
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; & \Delta \mathrm{H}=-94 \mathrm{kcal} \\
\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} ; & \Delta \mathrm{H}=-68 \mathrm{kcal}
\end{array}
$$

On the basis of the above equations, $\Delta H_{f}$ enthalpy of form ation of $C_{2} H_{2}$ will be
a $\quad \mathbf{- 1 4 8} \mathbf{k c a l} \quad \mathrm{b}+54 \mathrm{kcal}$
c $\quad \mathbf{- 5 4} \mathrm{kcal} \quad \mathrm{d}+\mathbf{8 0} \mathbf{k c a l}$
24. $\mathrm{I}_{2} \mathrm{~S} \rightleftharpoons \mathrm{I}_{2} \mathrm{~g} ; \Delta \mathrm{H}=\boldsymbol{+ 4 0} \mathrm{kcal}, \Delta \mathrm{S}=\mathbf{8 0}$ cal. The sublimation point of $\mathrm{I}_{2} \mathrm{~s}$ will be
a $100{ }^{\circ} \mathrm{C}$
b $127{ }^{\circ} \mathrm{C}$
c $227{ }^{\circ} \mathrm{C}$
d $500{ }^{\circ} \mathrm{C}$
25. If 0.1 M solutions of each electrolyte are taken and if all electrolytes are completely dissociated, then whose boiling point will be highest?
a Glucose
b KCL
c $\mathrm{BaCL}_{2}$
d $\mathrm{K}{ }_{4}\left[\mathrm{FeCN}{ }_{6}\right]$
26. A solid metal has ccp or fcc structure. The relation of side of cube a and redius of atom $r$ will be
a $a=2 r$
b $a=22 \sqrt{2} r$
c $a=\frac{4}{\sqrt{3}} r$
$d a=\sqrt{\frac{3}{2}} r$
27. Hydrogen is prepared on large scale for industrial use
a by $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4}$
b by Al+NaOH
c by $\mathrm{Na}+\mathrm{C}{ }_{2} \mathrm{H}_{5} \mathrm{OH}$
d from water gas
28. Which of the following properties of lithium does not show diagonal relationship with magnesium ?
a Formation of $\mathrm{Li}{ }^{+}$ion
b Formation of $L i_{3} \mathbf{N}$
c Solubility of LiHCO ${ }_{3}$
d Thermal decomposition of $\mathrm{Li}{ }_{2} \mathrm{CO}_{3}$
29. Which of the following carbonates decomposes at lowest temperature?
a $\mathrm{MgCO}_{3}$
b $\mathrm{CaCO}_{3}$
c $\mathrm{SrCO}_{3}$
d $\mathrm{BaCO}_{3}$
30. In which of the following pairs both molecules do not possess same type of hybridization?
a $\mathrm{CH}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$ b $\mathrm{PCL}{ }_{5}$ and $\mathrm{SF}_{4}$
c SF ${ }_{6}$ and $\mathrm{XeF}_{4}$
d $\mathrm{BCL}_{3}$ and $\mathrm{NCL}_{3}$
31. If $\mathrm{H}-\mathrm{X}$ bond length is $2.00 \boldsymbol{A}$ and $\mathrm{H}-\mathrm{X}$ bond has dipole moment $5.12 \times 10^{-30} \mathrm{C}-\mathrm{m}$, the percentage of ionic character in the molecule will be
a 10\%
b 16\%
c $18 \%$ d $20 \%$
32. i H $-\mathrm{C}-\mathrm{H}$ angle in $\mathrm{CH}_{4}$
ii $C L-B-C L$ angle in $B C L_{3}$
iii $F \quad-I-F$ angle in $I_{7}$ in a plane
iv $I-I-I$ angle in $I_{3}^{-}$
Increasing order of above bond angles is
a i<ii<iii<iv
b ii<i<iii<iv
c iii<i<ii<iv
d iv<ii<i<iii
33. According to molecular orbital theory, bond order in increasing order will be
a $\mathrm{O}^{2+}{ }_{2}<\mathrm{O}_{2}<\mathrm{O}_{2}{ }^{-}<\mathrm{O}^{2-}{ }_{2}$
b $\mathrm{O}^{2-}{ }_{2}<\mathrm{O}_{2}{ }^{-}<\mathrm{O}_{2}<\mathrm{O}^{2+}{ }_{2}$
c $\mathrm{O}_{2}<\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}^{-}<\mathrm{O}^{2+}{ }_{2}$
d $\mathrm{O}_{2}<\mathrm{O}_{2}^{2+} \mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{2-}$
34. Correct order electron affinities of halogens is
a $\mathrm{F}>\mathrm{CL}>\mathrm{Br}>$ I b $\mid>\mathrm{Br}>\mathrm{CL}>\mathrm{F}$
c $\mathrm{CL}>\mathrm{F}>1>\mathrm{Br} \quad$ d $\mathrm{CL}>\mathrm{F}>\mathrm{Br}>1$
35. Atomic radii of $\mathrm{Ti}, \mathrm{Zr}$ and Hf vary
a $\mathrm{Ti}>\mathrm{Zr}>\mathrm{Hf}$
b $\mathrm{Ti}<\mathrm{Zr}<\mathrm{Hf}$
c $\mathrm{Ti}<\mathrm{Hf}<\mathrm{Zr}$
d $\mathrm{Ti}<\mathrm{Zr}=\mathrm{HF}$
36. If $\mathrm{NO}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$ is dissolved in NaOH , we get solution of
a $\mathrm{NaNO}_{2}$
b NaNO 3
c mixture of $\mathrm{NaNO}_{2}$ and $\mathrm{NaNO}_{3}$
d $\mathrm{NaNO}_{4}$
37. A gas that religts glowing splinter, is
a $\mathrm{H}_{2}$
b $\mathrm{O}_{2}$
c $\mathrm{N}_{2} \mathrm{~d} \mathrm{NO}_{2}$
38. A white-coloured inorganic compound, on heating, gives a gas which turns lime water milky and residue is left which is yellow when hot and turns white and cooling. The compound is
a pbNO
32
b pbCO 3
c $\mathrm{BaCO}_{3}$
d $\mathrm{ZnCO}_{3}$
39. Buckminster-fullerebe is a variety of
a boron
b carbon
c ammonia
d fluorine
40. What will be the compound if two valencies of carbonyl group are satisfied by two alkyl groups?
a Aldehyde b Ketone
c Acid d Acidic anhydride
41. 2-chloro-3-methylbutane is treated with sodium in enerial solution,then it will give
a 2,4 -dimethylhexane
b 3,5 -dimethylhexane
c 2,3,4,5 -tetramethylhexane
d 2,6 -dimethyloctane
42. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CL}+\mathrm{aq} \mathrm{NaOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaCL}$; this reaction is
a electrphilic substitution of I order
b electrophilic substitution of II order
c nucleophilic substitution of I order
d nucleophilic substitution of II order
43. Which of the following does not contain chiral carbon atom?
a Lactic acid
b 2 -chlorobutanoic acid
c Tartaric acid d Succinic acid
44. An organic on reuctive ozonolysis produces
i acetaldehyde
ii acetone
iii 2 -methylprpane-1.3-dial

The formula of alkadiene will be
a

b $\mathrm{CH}_{3} \mathrm{CHCH}=\mathrm{CCH}=\mathrm{CHCH}_{3}$

$\mathrm{CH}_{3} \quad \mathrm{CH}_{3}$
c

d

45. Which of the following acids will have lowest value of $\mathrm{pK}_{\mathrm{a}}$ ?
a $\mathrm{CH}{ }_{3} \mathrm{CH}_{2} \mathrm{COOH}$
b CH ${ }_{3} \mathrm{CHCOOH}$
|
Br
c $\mathrm{CH}{ }_{3} \mathrm{CHCOOH}$
d $\mathrm{FCH}{ }_{2} \mathrm{CH}_{2} \mathrm{COOH}$
।
F
46. Which of the following will not respond to iodoform test ?
a Ethyl alcohol
b propanol
$-2$
c Propanol -1 d Ethanal
47. The strongest ortho/para directing group is
a $-\mathrm{NH}_{2}$
b $-\mathrm{CH}_{3}$
c $\quad \mathrm{CL}$
d $-\mathrm{C}_{2} \mathrm{H}_{5}$
48. Which of the following reaction can be used to change benzaldehyde to cinnamic acid?
a perkin $r$ eaction $b$ Knoevenagle reaction
c Reformatsky reaction d Benzoin condensation
49. Which of the following is strongest base ?
a C ${ }_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
b p $-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$
c $\mathrm{m}-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$
d $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$
50. Correct acidic order of the following compounds is


$\mathrm{CH}_{3} \quad \mathrm{NO}_{2}$
i
ii
iii
a $1>i i>i i i$
b lii>i>ii
c li>iii>i
d 1>iii>ii

